

transcranial Direct Current Stimulation tDCS

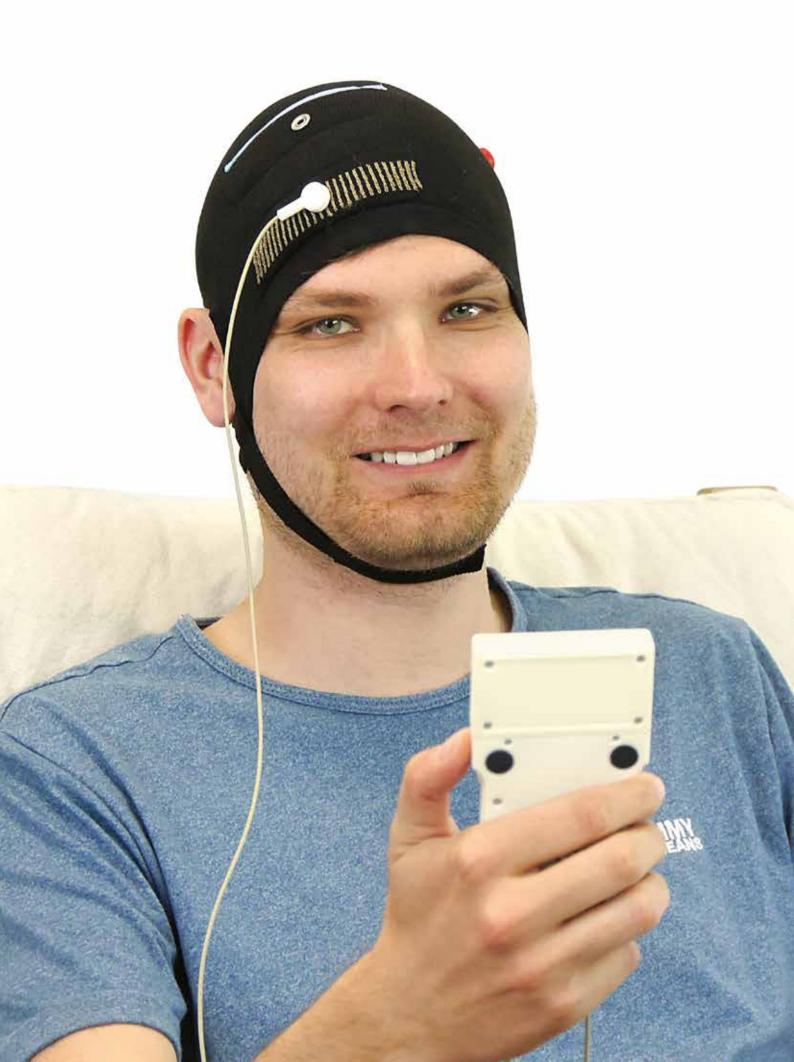
Effectiveness in studies

Imprint

neurocare group AG

Albert-Einstein-Straße 3, 98693 Ilmenau, Germany

Phone: +48 (3677) 68 979 0


e-mail: info@neurocaregroup.com • web: www.neurocaregroup.com administrative office: Rindermarkt 7 • 80331 Munich • Germany

Images: neurocare group AG, Copyright: neurocare group AG 2021

The use or publication of contained texts or pictures is strictly prohibited. Exceptions require the written approval of neurocare group AG.

Content

Safety & application	5	2017	Guidelines on safety and application of tDCS Antal et al.
Depression	6 7 8 9	2017 2017 2015 2014	Depression, Brunoni et al. Depression after stroke, Tea-Gyi et al. Depression, Aust et al. Depression, Segrave et al.
Addicitive disorders	10 11 12	2018 2018 2015	Addiction - Overview, Coles et al. Alcohol addiction, Klauss et al. Cocain addiction, Kruger Batista et al.
Pain	13 14 15 16 17	2017 2017 2016 2014 2010	Fibromyalgia, Silva et al. Migrain, Przeklasa-Muszynska et al. Chronic pain, Concerto et al. Pain after stroke, Sea-Hyun et al. Pain in case of Multiple Sclerosis, Mori et al.
Motoric deficites	18 19 20 22 23	2017 2016 2016 2015 2016	after stroke, Andrade et al. after stroke, Allman et al. after stroke, Goodwill et al. after stroke, Sattler et al. in case of Parkinson, Coast-Riberio et al.
Cognitive deficites	24 25 26 27 28 29	2019 2017 2016 2016 2016 2015	working memory in elderly people, Antonenko et al. after stroke, Ruf et al. after traumatic brain injury, Sacco et al. in case of Multiple Sclerosis, Mattioli et al. in case of Parkinson, Manenti et al. after stroke, Yun et al.
Neglect	30	2016	after stroke, Yi et al.
Dysphagia	31	2018	after stroke, Suntrup-Krueger et al.
Aphasia	32 33 34 35	2018 2016 2016 2017	after stroke, Rosso et al. after stroke, Meinzer et al. after stroke, Fiori et al. in case of dementia, Roncero et al.
Schizophrenia	36 37	2018 2012	working memory, negative symptomes, Gomeset et al. auditory hallucinations, Brunelin et al.
	38	Abbre	eviations / Training & Science

Guidelines on safety and application of tDCS

Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application quidelines

Authors

Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Bowthwaite G, Ellrich J, Flöel A, Fregni F, Goerge MS, Hamilton R, Haueisen J et al.;

2017 - Clinical Neurophysiology, Volume 128, NO. 9

Methodology

Systematic hazard analysis side effects in transcranial current stimulation studies (in total 18,000 stimulation sessions in healthy people, neurological and psychiatric patients). Inclusion of studies up to 2016.

Objective

To review the safety and potential side effects of tDCS in humans and recommendations for safe use in clinical practice

Results

assessment	results		
	(tDCS) in humans is considered safe on the basis of this study		
safety	side effects in the elderly, pregnant women, children are not different from those typical of adult study participants		
	long-term effects in children/adolescents have not been sufficiently investigated		
side effects	moderate side effects requiring action are rare and not clearly caused by tDCS		
	mild side effects without need for action: headache, tiredness after stimulation, slight tingling or burning sensation at the stimulation site		
	moderate side effects: skin burns due to improper application of the electrodes		
	no reports of serious side effects		
	no reported cognitive or perceptual side effects		
	no reported seizures demonstrably attributable to tDCS		
injuries	risk of injury can be minimized by:		
	- selection and preparation of the electrode		
	 correct placement of the electrodes, specifically the position and contact with skin (through saline paste or sponges with sufficient saline solution) 		

Recommendations

protocol comply with maximum stimulation levels and duration alongside correct electrode application			
device technology	do not use homemade or uncertified equipment		
device technology	use devices which are verified in scientific research		
patient suitability	comprehensive background information on patient before therapy in an intake consultation assessing contraindications and risks		
training	sufficient training of users in safety precautions and the attaching of electrodes		

Conclusion

This analysis shows that standardized applications of tDCS can be safely performed within the limits of the clinically approved and common intensity of max. 1 - 2 mA and max. 20 - 30 minutes with correct application of the electrodes. For all practitioners, instruction in handling the electrodes and the protocols is necessary.

Depression

Trial of Electrical Direct-Current Therapy versus Escitalopram for Depression

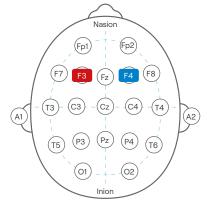
Authors

Brunoni AR, Moffa AH, Sampaio-Junior B, Borrione L, Moreno ML, Fernandes RA, Veronezi BP, Nogueira BS, Aparicio LVM, Razza LB, Chamorro R, Tort LC, Fraguas R, Lotufo PA, Gattaz WF, Fregni F, Benseñor IM; 2017 – The New England Journal of Medicine, Volume 376

Objective

influence of tDCS or escitalopram (SSRI) on depression

Procedure


placebo group: placebo Escitalopram + placebo stimulation; Escitalopram group: Escitalopram + placebo stimulation; tDCS group: placebo Escitalopram + active stimulation

Methodology

double-blind study (RCT) with 202 depressed patients (55 placebo, 75 escitalopram, 72 tDCS)

Parameters

stim. intensity	2 mA	
duration	30 min	
anode	F3	
cathode	F4	
size of electrode	35 cm ²	
treatment	5 times a week (first 3 weeks) after that 1 x per week (7 weeks)	
scope	22 sessions	
assessment	HDRS-17, MADRS	

10-20 system

Results

Assessment	placebo group	Escitalopram group	tDCS group
	reduction of HDRS scores compared pre-post by 5.8 ± 7.9 points	reductions of HDRS scores compared pre-post by 11.3 ± 6.5 Points	reductions of HDRS scores compared pre-post by 9.0 ± 7.1 points
HDRS-17		** Escitalopram was significantly better than placebo [difference: 5.5, 95% CI, 3.1 vs. 7.8, P<.001]	* tDCS was significantly better than placebo [difference: 3.2, 95 % CI, 0.7 vs. 5.5, P=.01]
		* slight superiority of Escitalopram ove [difference: 2.3, 95% CI, -4.3 vs0.4	
		** * in the 10th week, the response rate was significantly higher (reduction b >50% to baseline) in tDCS and escitalopram than in placebo stimulation	
	reduction of MARDS scores compared pre-post by 6.6 ± 9.3 points	reduction of MARDS scores compared pre-post by 13.4 ± 9.3 points	reduction of MARDS scores compared pre-post by 11.0 ± 9.4 points
MARDS		** Escitalopram was significantly better than placebo [Difference: 6.8, 95% CI, 5.4 zu 10.6, P<.001]	** tDCS was significantly betterthan placebo [Difference: 4.4, 95% CI, 2.1 zu 7.2, P=.006]
		* slight superiority of Escitalopram over tDCS [Difference: -2.4, 95% CI, -5.7 zu -1.1, P=.04]	

Conclusions

This study shows that patients with moderate or severe depression (and existing anxiety disorder) can be successfully treated with tDCS. For classic pharmacological treatment, tDCS was shown to be a successful alternative in this study.

Significance Scores: * P<0.05; ** P<0.01; *** P<0.001

Depression - Stroke

Effect of transcranial direct current stimulation of stroke patients on depression and quality of life

Authors

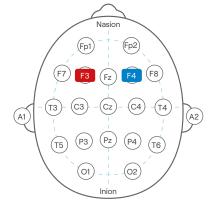
Tae-Gyu A, Soo-Han K, Ko-Un K;

2017 - The Journal of Physical Therapy Science, Volume 29

Objective

effect of tDCS of DLPFC in patients with post-stroke depression

Procedure


placebo group: conventional occupational therapy + placebo stimulation; Verum group: conventional occupational therapy + active stimulation

Methodology

controlled study of 40 patients with post-stroke depression (20 control group, 20 tDCS group)

Parameters

stim. intensity	2 mA
duration	30 min
anode	F3
cathode	F4
size of electrode	35 cm ²
treatment	1 x daily (for four weeks)
scope	20 sessions
assessment	BDI, SS-QOL

10-20 system

Results

Assessment	placebo group	active group	
BDI	no significant change in the depressive symptoms from pre 39.0 ± 4.6 to post: 37.8 ± 6.1	* significant improvement of depressive symptoms from pre 38.8 ± 4.7 to post: 16.8 ± 4.6	
SS-QOL	no significant change in quality of life from pre 154.3 ± 18.3 to post: 162.1 ± 18.7	 * significant improvement of depressive symptoms from pre 152.1 ± 16.9 to post: 167.7 ± 25.7 	

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The results of the study show the positive effect of tDCS on the DLPFC in patients after stroke. Twenty treatments reduced the depressive symptoms by half (BDI scores) and improved quality of life.

Depression

Transcranial direct current stimulation in depressive disorders

Authors

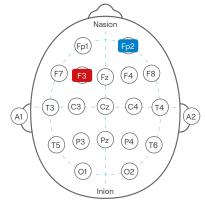
Der Nervenarzt

Aust S, Palm U, Padberg F, Bajbouj M; 2015 – Nervenarzt – Review, volume 12/2015

Objective

efficacy of tDCS to reduce depressive disorders

Procedure


placebo group: placebo stimulation; active group: active stimulation

Methodology

review: 6 randomized controlled studies involving 294 patients

Parameters

stim. intensity	2 mA		
duration	20-30 min		
anode	F3		
cathode	Fp2		
size of electrode	35 cm ²		
treatment	1 x daily		
scope	10-15 sessions		
assessment	HAMD, MADRS, BDI		

10-20 system

Results

Assessment	placebo group	active group
HDRS-17	no significant differences	 * significant improvement in therapy-resistant patients by 40-47%
MARDS	no significant differences	 * significant differences * treatment combining combining drug and tDCS showed great success (tDCS + sertraline)

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The review reports on the positive effect of tDCS in depressed patients - tDCS enhances activation in DLPFC. Neurological rehabilitation research points to a targeted use of tDCS to reduce depressive disorders.

Depression

Concurrent Cognitive Control Training Augments the Antidepressant Efficacy of tDCS: A Pilot Study

Authors

BRAIN STIMULATION

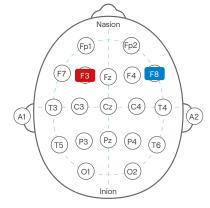
Segrave RA, Arnold S, Hoy K, Fitzgerald P; 2014 – Brain Stimulation, volume 7

Objective

clinical effects of tDCS in combination with computerassisted cognitive training in depressive symptoms

Procedure

placebo group: cognitive training + placebo stimulation; acitve group: cognitive training + active stimulation


Methodology

Combination of tDCS and cognitive training:

double-blind study with 27 depressive patients (9 placebo, 18 active) with and without cognitive training

Parameters

stim. intensity	2 mA
duration	24 min
anode	F3
cathode	F8
size of electrode	35 cm ²
treatment	1 x daily
scope	5 sessions
assessment	MARDS, BDI, Two-Back

10-20 system

Results

Assessment	placebo group	active group
	* MARDS scores decreased [P=0.02]	decreased MARDS scores [P=0.06]
MARDS	after follow-up, MARDS scores decreased and were similar to the baseline	** after follow-up, clear and increasing improve- ment in MARDS scores [P<0.001]
BDI	** BDI scores decreased [P=0.006]	no significant changes [P>0.05]
	after follow-up, BDI scores decreased and were similar to the baseline	** after follow-up, clear and increasing improve- ment in the BDI scores [P=0.004]
Two-back (accuracy)		** higher accuracy [P=0.02]
Two-back (responsiveness)	** responsiveness increased over time, in all [positive: F(3,69)=7.93, P=0.001; neutral: F(3,69)=10.16, P<0.001; negative: F(3,69)=13.25, P<0.001]	

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

This study shows that tDCS can reduce depressive symptoms. Additional cognitive training (attention training) can effectively reduce depression and increase alertness in a short period of time.

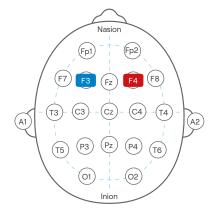
Addictive disorders - Overview

A Review of Brain Stimulation Methods to Treat Substance Use Disorders

Authors

Coles AS, Kozak K, George TP;
2018 – American Journal on Addictions, volume 27

Objective


Review of the clinical efficacy of various stimulation methods (rTMS, tDCS, DBS) for addiction disorders

Methodology

Systematic analysis of studies published between 2000 and 2017 in peer-reviewed journals; test participants had diagnoses of an addiction disorder according to DSM IV and DSM V, respectively

Parameters & general resuts regarding tDCS

stim. intensity	mostly 2 mA	
duration	20 min	
anode	different positions, often IDLPFC	
cathode	different positions, often rDLPFC	
scope	several sessions (5-10) are recommended	
objective	craving and consume, relapse	
effect size	medium to large after several sessions	
Outcome efficacy of tDCS comparable to efficacy of TMS		

10-20 system

Results tDCS studies with multiple similar sessions tDCS 2 mA, 20 minutes

substance	Total number of participants	Results
alcohol	137	craving and / or recurrence rate significantly changed with cathodal stimulation of the left DLPFC
tobacco	76	mixed results on anodal stimulation of the left DLPFC
		significant reduction in craving and / or consumption in cathodal stimulation of the left DLPFC
cocain	60	significant reduction in craving versus baseline and placebo group
		no difference in anxiety, depressive symptoms and cognitive performance

significance scores: * p<0,05; ** p<0,01; *** p<0,001

Conclusions

This analysis shows that short-term treatment with tDCS leads to a decrease in craving in different types of substance-related dependencies. The recurrence rate and thus the consumption itself are in some cases significantly reduced. The best results are achieved by stimulating the DLPFC.

Addictive disorders - Alcohol

Multiple Sessions of Transcranial Direct Current Stimulation (tDCS) Reduced Craving and Relapses for Alcohol Use: A Randomized Placebo-Controlled Trial in Alcohol Use Disorder

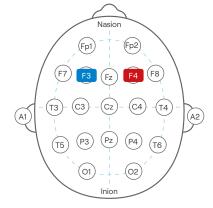
Authors

frontiers in Pharmacology Klauss J, Anders QS, Felippe LV, Nitshe MA, Nakamura-Palacios EM; 2018 - frontiers in Pharmacology, volume 9

Objective

efficacy of repetitive bilateral tDCS over the DLPFC in alcoholics

Procedure


placebo group: placebo stimulation; active group: active stimulation

Methodology

double-blind study (RTC) with alcoholics (placebo group, active group) in a specialist hospital for addiction sufferers

Parameters

stim. intensity	2 mA
duration	20 min
anode	F4 (rDLPFC)
cathode	F3 (IDLPFC)
size of electrode	35 cm ²
treatment	every 2 days
scope	10 sessions
assessment	OCDS (craving), abstinence

10-20 system

Results

Assessment	placebo group	active group	
	72.2% of the patients relapsed within	27.3% of the patients relapsed within	
Recurrence	3 months of therapy	3 months of therapy	
	difference between the groups (relapse) is significant (p=0.01)		
	mean dropped from 3.82 (at the beginning)	mean dropped from 5.25 (at the beginning	
	to 2.46 (in the follow-up)	to 1.56 (in the follow-up)	
	small effect size (0.32)	big effect size (1.07)	
OCDS	no significant difference pre-post	no significant difference pre-post	
	significant difference before treatment to follow-up		
	significant group differences		

significance scores: * p<0,05; ** p<0,01; *** p<0,001

Conclusions

The study shows that bilateral stimulation of the DLPFC can significantly reduce the probability of both recurrence and craving. At the time of follow-up, three quarters of the test participants remained abstinent after the stimulation therapy. In the placebo group approximately only a quarter of the participants remained abstinent. It is therefore understood that tDCS can support the long-term success of treatment.

Addictive disorders - Cocaine

A randomized placebo-controlled trial of targeted prefrontal cortex modulation with bilateral tDCS in patients with crack-cocaine dependence

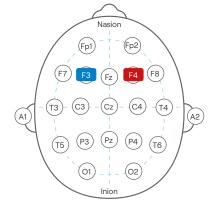
Authors

Batista E, Klauss J, Fregni F,
Nitsche MA, Nakamura-Palacios EM;
2015 – International Journal of Neuropsychopharmacology,
volume 18

Objective

clinical effects of repetitive bilateral tDCS on DLPFC in cocaine addiction

Procedure


placebo group: placebo stimulation; active group: active stimulation

Methodology

double blind study (RTC) with 36 crack cocaine addicts (19 placebo group, 17 verum group)

Parameters

stim. intensity	2 mA	
duration	20 min	
anode	F4 (rDLPFC)	
cathode	F3 (IDLPFC)	
size of electrode	35 cm ²	
treatment	1 x daily, every second day	
scope	5 sessions	
assessment	essment HAM-D, HAM-A, WHOQOL, Craving	

10-20 system

Results

Assessment	placebo group	active group
Craving		 active group and placebo group differ significantly in terms of craving (group and treatment: [F(1,33)=5.29, P=.028, partial n²=0.14]
		* craving scores decreased linearly from baseline to last treatment [linear regression: 4.412 - 0.617X, r2=0.058, F(1,66)=4.089, P=.047]
HAM-D		* significant change in HAM-D values within the group (P=.04)
НАМ-А		 opposite results: values of the active group decrease, values of the placebo group increase (P=.03)
wнооог		* significant differences between groups in WHOQOL: (Q1: P=0.31 & Q2: P=0.48)

significance scores: * p<0,05; ** p<0,01; *** p<0,001

Conclusions

The craving scores were lower after bilateral repetitive tDCS. The active group, compared to the placebo group, is significantly different in terms of anxiety, quality of life and health. The values of the active group improved in post and follow-up.

Pain - Fibromyalgia

Anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex modulates attention and pain in fibromyalgia: randomized clinical trial

Authors

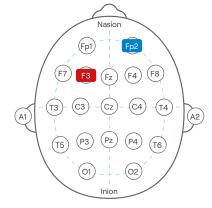
Silva AF, Zortea M, Carvalho S, Leite J, da Silva Torres IL, Fregni F, Caumo W; 2017 – Nature, volume 7

Objective

efficacy of tDCS on patients with fibromyalgia and cognitive deficits

Procedure

placebo group: Go/No-go task + placebo stimulation; active group: Go/No-go task + active stimulation


Methodology

Combination of tDCS and cognitive training:

single blind study (RCT) with 40 patients with fibromyalgia (20 placebo group, 20 active group)

Parameters

stim. intensity	1 mA
duration	20 min
anode	F3
cathode	Fp2
size of electrode	35 cm ²
treatment	1 x per week
scope	2 sessions
assessment ANT, HPTh, HPTo, Go/No-go task	

10-20 system

Results

Assessment	
ANT	* significant group difference; active group compared to placebo group achieved higher orientation values in ANT after stimulation [F(1, 70.0)=4.189; P=0.044]
	* significant group effect; active group compared to placebo group achieved higher levels in executive function in ANT after stimulation [F(1, 49.11)=7.94; P=0.007]
	* active group compared to placebo group performed significantly better than placebo group in congruent target condition without cue and spatial cues [P=0.040; P=0.020]
HPTh	* active group showed a significant improvement of 4.95% of the heat pain threshold compared to the placebo group [P=0.03]
НРТо	* active group showed a significantly higher tolerance of 3.6% to heat pain compared to the placebo group [P=0.03]
Go/No-go Task	no significant effects

significance scores: * p<0,05; ** p<0,01; *** p<0,001

Conclusions

The results of the study show that only after a few stimulation sessions in combination with a Go/No-go training can increase the neural network for attention in orientation and executive function. Stimulation of the DLPFC can be used as an additional stimulation site adjacent to M1 to reduce pain in patients with fibromyalgia.

Pain - Migraine

Transcranial direct current stimulation (tDCS) and its influence on analgesics effectiveness in patients suffering from migraine headache

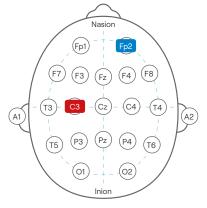
Authors

Przeklasa-Muszynska A, Kocot-Kepska M, Dobrogowski J, Wiatr M, Mika J; 2017 - Pharmacological Reports, volume 69

Objective

effect of tDCS on drug consumption and pain in migraine patients

Procedure


control group: pharmacological therapy active group: active stimulation and pharmacological therapy

Methodology

single blind study (RCT) with 50 migraine patients with and without aura (20 control group, 30 active group)

Parameters

stim. intensity	2 mA	
duration	20 min	
anode	C3	
cathode	Fp2	
size of electrode	35 cm ²	
treatment	2-3 x per week	
scope 10 sessions		
assessment	duration of migraine, migraine seizures, drug use, pain intensity of migraine (NRS)	

10-20 system

Results

Assessment	placebo group	active group
duration of migraine	no significant reduction with and without aura	*** with aura: reduced from 24 hours to 10 hours *** without aura: reduced from 25 to 8.5 hours
Migraine seizures	no significant reduction with and without aura	** with aura: from 7 days a month to 4 days a month** without aura: from 7 days a month to 4 days a month
4	no significant reduction (analgetic) with and without aura	** Analgesic consumption: with aura a reduction of 49%* Analgesic consumption: without aura a reduction of 72%
drug consumption	no significant reduction (Triptane) with and without aura	** Triptans: with Aura a reduction of 49%* Triptans: without aura a reduction of 59%
	*** after the 10th treatment, the groups differed quite significantly from each other	
pain intensity of Migraine (NRS)	reduction in pain intensity with aura by 12,5%	reduction in pain intensity with aura by 36%
iviigi aii ie (NN3)	reduction in pain intensity without aura by 10%	reduction in pain intensity without aura by 40%

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

This study demonstrates the well-tolerated and effective use of tDCS in migraine patients. The pain intensity of the migraine, the migraine seizures, the migraine duration as well as drug consumption were significantly reduced by 10 treatments.

Pain - Chronic pain

Anodal transcranial direct current stimulation for chronic pain in the elderly: a pilot study

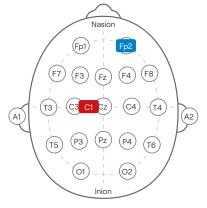
Authors

CLINICAL & EXPERIMENTAL BESEARCH Concerto C, Al Sawah M, Chusid E, Trepal M, Taylor G, Aguglia E, Battaglia F; 2016 - Aging - Clinical and Experimental Research, volume 28

Objective

efficacy of anodal tDCS on the motor cortex to relieve chronic pain and depression

Procedure


experimental group: pharmacological therapy + active stimulation

Methodology

uncontrolled study: 10 patients with chronic pain

Parameters

stim. intensity	2 mA	
duration	20 min	
anode	C1/C2 (contralateral to the pain side)	
cathode	Fp1/Fp2 (contralateral to the anode)	
size of electrode	25 cm ²	
treatment	1 x daily	
scope 5 sessions		
assessment	VAS for pain, FFI, PASS-20, drug use, HDRS	

10-20 system

Results

Assessment	active group
VAS for pain	*** improvement of chronic pain by 36.9% after last treatment [P<0.0001], 42,4% one week after the last stimulation [P<0.0001]
	** significant improvement of chronic pain by 21.6% after last treatment four weeks after the last stimulation [P<0.006]
FFI	*** improved foot function by 36.8 % after the last stimulation [P<0.0001], 25.2% one week after the last stimulation [P<0.0001], 23.2% four weeks after the last stimulation [P<0.0001]
	*** anxiety related to potential pain decreased by 18.2% after stimulation [P<0.0001],
PASS-20	15.5% one week after the last stimulation [P<0.0001],
.,	12.7% four weeks after the last stimulation [P<0.0001]
drug *** significantly reduced consumption of painkillers in follow-up [P<0.0002, P<0.0043	
HDRS	no significant changes over time

significance scores: * P<0.05; ** P<0.01; *** P<0.001

The study shows that anodal tDCS of the motor cortex can significantly reduce pain and is long lasting. The normalization of impaired activity in the pain-processing network has increased the quality of life of chronic pain patients.

Pain - Stroke

Analgesic effect of transcranial direct current stimulation on central post-stroke pain

Authors

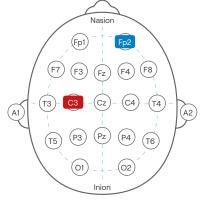
Tohoku Journal of Experimental Medicine

Sea-Hyun B, Gi-Do K, Kyung-Yoon K; 2014 – The Tohoku Journal of Experimental Medicine, Volume 234

Objective

effect of tDCS on the analgesic effects in patients after stroke

Procedure


placebo group: placebo stimulation; active group: active stimulation

Methodology

single blind study (RCT) with 14 patients after stroke with central pain (7 placebo group, 7 active group)

Parameters

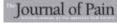
stim. intensity	2 mA	
duration	20 min	
anode	C3/C4 - contralateral to side of pain	
cathode	Fp1/Fp2 - contralateral to anode	
size of electrode	35 cm ²	
treatment	3 x per week	
scope 3 weeks		
assessment	VAS for pain, skin temperature measurement, quantitative sensory measurements	

10-20 system

Results

Assessment	placebo group	active group
VAS for pain	no significant change pre: 4.28, post: 4.14	 * significant pain reduction Pre: 4.92 and post: 3.14 [P<.05]
skin temperature	no significant change pre: 0.94, post: 0.82	 * significant reduction of temperature pre: 0.96, post: 0.49 [P<.05]
quantitative sensoric measurement	no significant change in cold perception: pre: 24.71, post: 25.09	* significant change in cold perception: pre: 24.71, post: 25.09 [P<.05]
	no significant change in heat perception: pre: 7.36, post: 36.99	 * significant change in heat perception: pre: 38.19, post: 35.93 [P<.05]
	no significant change in cold pain threshold pre: 13.57, post: 13.80	** significant change in cold pain threshold pre: 12.24, post: 14.03 [P<.001]
	no significant change in threshold for heat pain pre: 48.01, post: 48.16	 * significant change in threshold for heat pair pre: 48.07, post: 47.7

significance scores: * P<0.05; ** P<0.01; *** P<0.001


Conclusions

The results demonstrate the effectiveness of tDCS in reducing pain in post stroke patients. The threshold for feeling cold and cold pain as well as for feeling warmth and heat pain changed sustainably

Pain - Multiple Sclerosis

Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis

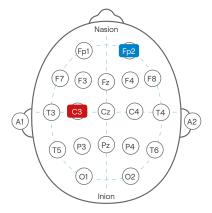
Authors

Mori F, Codeà C, Hajime K, Monteleone F, Buttari F, Fiore S, Bernardi G, Koch G; 2010 - The Journal of Pain, volume 11

Objective

efficacy of daily tDCS (on consecutive days) to reduce chronic pain in multiple sclerosis patients

Procedure


placebo group: placebo stimulation; active group: active stimulation

Methodology

couble-blind study (RCT) with 19 drug-resistant multiple sclerosis patients with neuropathic pain (9 placebo group, 10 active group)

Parameters

stim. intensity 2 mA		
duration	20 Mmn	
anode	C3/C4 - contralateral to side of pain	
cathode	Fp1/Fp2 - contralateral to anode	
size of electrode	35 cm ²	
treatment	1 x daily	
scope 5 sessions		
assessment	VAS for Pain, SF-MPQ, MSQOL-54, BDI, VAS for anxiety	

10-20 system

Results

Assessment	placebo group	active group
		** pain reduction after the fifth day compared to the first [baseline, day 1, day 2, day 3, day 4, day 5: F=9.03, P<.001]
VAS for pain		* significant differences from day three compared to baseline by 51.7% \pm 10.3, day four at baseline by 43.9% \pm 11,5 and day five at baseline by 45.5% \pm 11,0
SF-MPQ		 * subjective pain perception decreased after the first week and remained low [every: P<.05]
MSQOL-54		* significant effects time (group x time interaction)-> significant differences persisted until follow-up
BDI		no significant differences
VAS for anxiety		no significant differences

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The results show the effectiveness of tDCS for the reduction of neuropathic pain in multiple sclerosis patients (significant reduction of pain in active group). A small amount of stimulation is enough to improve pain perception and quality of life in MS patients.

Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

Authors

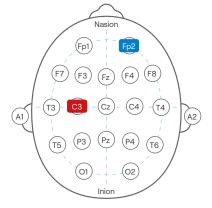
Rehabilitation Research and Practice Andrade SM, Batista LM, Noqueira LLRF, de Oliveira EA, de Carvalho AGC, Lima SS, Santana JRM, de Lima ECC, Fernández-Calvo B;

2017 - Rehabilitation Research and Practice, volume 2017

Objective

effects of daily tDCS in combination with CIMT on motor rehabilitation in patients after stroke

Procedure


placebo group: motor training + placebo stimulation; active group: motor training + active stimulation

Methodology

double blind study (RCT) with 60 patients after stroke (20 placebo group, 20 active group (M1), 20 active group

Parameters

stim. intensity	1 mA	
duration	20 min	
anode	C3/C4 or 2,5 cm anterior to C3/C4 (same hemisphere as lesion)	
cathode	Fp1/Fp2 (contralateral to anode)	
size of electrode	16 cm ²	
treatment	5 x per week	
scope	10 sessions	
assessment	BI, UEFM, MAS, BBT, MRC	

10-20 system

Doculto

Assessment	placebo group	active group	
ВІ	* smaller effect size in placebo group $[\delta =14, P = .01]$	* stronger effect size in PMC and M1 groups [PMC: δ =83, P=.02; M1: δ =64, P=.01]	
	* significant differences between the groups [{	52=11.41, df=2, P=.01]	
UEFM	* V improvement placebo group, pre-post within the group from 20 to 24 [z = 0.44, P = .01]	* improvement group M1, pre-post within the group from 20 to 29 [z=-2.04, P=.01]	
		* PMC improvement, pre-post within the group from 21 to 33 [z=-2.86, P=.02]	
	PMC showed greatest improvement in motor replacebo [z=-2.36; P=.03]	ecovery compared to M1 [z=-2.01; P=.04] and	
MAS	* reduction of spasm in placebo stimulation, pre-post from 18 to 15 [z=-1.16, P=.03]	* reduction of spasm in M1, pre-post from 17 to 11 [z=-1.94, P=.01]	
		* reduction of spasm in PMC, pre-post from 16 to 7 [z=-2.87, P=.02]	
	* PMC greatest reduction of spasm compared to M1 [z=-2.12; P=.02] and placebo stimulation [z=-2.51; P=.04]		
DDT and	no significant improvement in placebo group, pre-post [p>0.05]	no significant improvement in M1, pre-post [p>0.05]	
		* significant improvement in PMC, pre-post from 1 to 7 [z=-2.98, P=.02] and [z=-3.01, P=.03]	

Conclusions

significance scores: * P<0.05; ** P<0.01; *** P<0.001

The study shows that the combined use of CIMT and tDCS leads to significantly greater effects of motor rehabilitation than the isolated use of CIMT. It shows that the stimulation of the premotor cortex (PMC) can cause greater increases in performance than the stimulation of the motor cortex (M1). The stimulation of the premotor area can be a good alternative to standard stimulation of the M1.

Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke

Authors

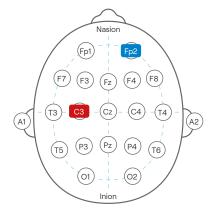
Translational Allman C, Amadi A, Winkler AM, Wilkins L, Filippini N, Kischka U, Stagg CJ, Johansen-Berg H; 2016 - Science Translational Medicine, Volume 8

Objective

effect of tDCS with Motor Training on Patients after Stroke

Procedure

placebo group: motor training + placebo stimulation; active group: motor training + active stimulation


Methodology

Combination of tDCS and motor training:

double-blind study (RCT) with 24 patients after stroke (13 placebo group, 11 active group)

Parameters

stim. intensity	1 mA	
duration	20 min stimulation + 40 min motoric training	
anode	C3/C4 (same hemisphere as lesion)	
cathode	Fp1/Fp2 (contralateral to anode)	
size of electrode	35 cm ²	
treatment	1 x daily	
scope	9 sessions	
assessment	ARAT, WMFT, UEFM and MRT	

10-20 System

Results

Assessment	placebo group active group		
ARAT		* significant improvement in ARAT [P=.031] compared	
Anai		* with placebo group	
WMFT		* significant improvement [P=.037] compared to the placebo group	
UEFM		* UEFM showed no significance compared to the placebo group	
UEFM		[P=.329]	
	no significant activation	* fMRI studies show increased activity of the active group in restricted	
MOT	patterns in the fMRI	hand movement in ipsilateral premotor and motor areas	
MRT			
	 MRI measurements of the active group show volume increase of grey matter in the premotor and motor cortex compared to the placebo group 		

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

This study shows that the combination of tDCS with motor training promotes neuronal plasticity. The significant long-term changes (follow-up) in the active group show the good possibility of combining tDCS with existing motor therapy. This suggests that motor cortex stimulation can produce plasticity and achieve greater effects than motor training without tDCS.

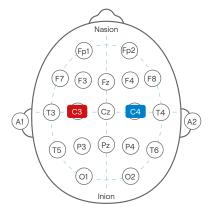
Bihemispheric-tDCS and Upper Limb Rehabilitation Improves Retention of Motor Function in Chronic Stroke: A Pilot Study

Authors in Pharmacology Goodwill AM, Teo W, Morgan P, Daly RM, Kidgell DJ; 2016 - Frontiers in Human Neuroscience, volume 10

Objective

effect of anodal tDCS on upper extremity motor rehabilitation and corticospinal plasticity

Procedure


placebo group: motor training + placebo stimulation; active group: motor training + active stimulation

Methodology

combination of tDCS and motortraining: double-blind study (RCT) with 15 chronic stroke patients (7 placebo group, 8 active group)

Parameters

1,5 mA 20 min C3/C4 (same hemisphere as lesion)	
C3/C4 (same hemisphere as lesion)	
C3/C4 (same hemisphere as lesion)	
C3/C4 (contralateral to the anode)	
25 cm ²	
3 x per week	
9 sessions	
MAS, grip strength, tardieu, corticospinal excitability, intracortical inhibition	

10-20 system

Results

Assessment	placebo group	active group
	** significant improvement in pre-post in both groups: placebo group: by 43%; active group: by 62% [df=2, both P<0.001]	
MAS	in follow-up (after 3 weeks) motor function	** improvements were maintained in follow-up
	decreased to 21% [Wald Chi-Square=77.21,	(after 3 weeks), or increased to 64 %
	df=2, P=0.08]	[Wald Chi-Square=13.25, df=2, P<0.001]
grip strength	no significant differences	
Tardieu Scale	* significantly small increase in the Tardieu Scale in the wrist [x2=6.56, P=0.02]	no significant differences
	no significant group differences in the elbow and spasticity	
corticospinal excitability: AMT	no significant differences	

> Results

Assessment	placebo group	active group	
Corticospinal excitability: MEPs (paretic arm)	no significant changes in triggering MEPs (% M _{MAX})pre-post, by 12 % [Wald Chi-Square =0.86, df=2, P=0.36]	** significantly easier triggering of MEPs (% M _{MAX}) pre-post, by 46 % [Wald Chi-Square=37.49, df=2, P<0.001]	
	** in follow-up (after 3 weeks), MEPs (% M _{MAX}) were more easily released by 38% [Wald Chi-Square=37.49, df=2, P<0.001]	** in follow-up (after 3 weeks), MEPs (% M _{MAX}) were more easily released by 38 % [Wald Chi-Square=37.49, df=2, P<0.001]	
	no significant changes in MEPs in the non-paretic arm		
Corticospinal excitability: Laterality Index (LI)	no significant changes	** increased excitability, shift of LI from 0.6 to 0.3, pre-post [Wald Chi-Square=14.80, df=2, P<0.001]	
	no significant changes	 in follow-up (after 3 weeks) the shift of the LI remained constant [Wald Chi-Square=14.80 df=2, P=0.03] 	
ntracortical	no significant changes	* significant increase in CSP by 33%, pre-post [Wald Chi-Square=8.16, df=2, P=0.01	
Inhibition: CSP, (non- paretic arm)	no significant changes	* in follow-up (after 3 weeks) the increase was maintained, 24% [Wald Chi-Square=8.16, df=2, P=0.04]	
	no significant changes	no significant changes	
ntracortical nhibition: SICI	* in follow-up (after 3 weeks), SICI in the active [Wald Chi-Square=7.08, df=2, P=0.04]	group increased by 27%	

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

This study demonstrates in detail the improvement of motor function of the upper limb after a tDCS stroke in combination with motor training. The increased hemispheric balance as well as improved corticospinal plasticity in the ipsilasional and contralesional M1 proves to be an important rehabilitation process for the recovery of motor functions after stroke.

Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after ischemic stroke

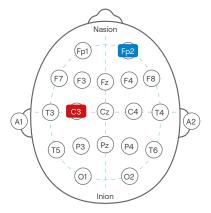
Authors

Sattler V, Acket B, Raposo N, Albucher JF, Thalamas C, Loubinoux I, Chollet F, Simonettra-Moreau M; 2015 – Neurorehabilitation and Neural Repair, volume 29

Objective

effect of tDCS and FES on the functional restoration of aromotory in patients after stroke in the acute phase

Procedure


placebo group: active FES + placebo stimulation (tDCS); active group: active FES + active stimulation (tDCS)

Methodology

Combination of tDCS and FES: double-blind study (RCT) with 20 patients after stroke with mild to moderate motor deficits (10 placebo, 10 active)

Parameters

stim. intensity	1,2 mA	
duration	13 in stimulation + 13 min FES	
anode	C3/C4 (same hemisphere as lesion)	
cathode	Fp1/Fp2 (contralateral to anode)	
size of electrode	35 cm ²	
treatment	1x daily	
scope	5 sessions	
assessment	JHFT, Hand Dynamometer, Nine Hole, Peg Test, Hand Tapping Test, ULFM, TMS (MEP)	

10-20 system

Results

Assessment	placebo group	active group
JHFT	 * significant improvement (baseline follow-up), reducing time to perform JHFT 	 * significant improvement (baseline follow-up), * Reducing the time to perform JHFT, day 5: 6 sec faster; day 15: 23 sec faster; day 30: 24 seconds faster
		 significantly improved motor performance after follow-up compared to the placebo group [day 15: P=.03; day 30: P=.01]
DYN	no significant changes	
9НРТ	no significant changes	
НТар	no significant changes	
	*** significant temporal improvement *** significant temporal improvement in	
ULFM	in follow-up; improved hand and finger extension	follow-up, improved hand and finger extension
TMS	no significant changes regarding AMT and RMT	

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The results of the combined therapy of tDCS and FES show an improvement of the tDCS group in the follow-up (JHFT). Specifically, the functionality of the hand improved, which has a positive effect on the activities of daily life. tDCS in combination with FES can be used for motor rehabilitation.

Motor disorders - Parkinson's disease

Transcranial direct current stimulation associated with gait training in Parkinson's disease: A pilot randomized clinical trial

Authors

DEVELOPMENTAL NEUROREHABILITATION

Coast-Ribeiro A, Maux A, Bosford T, Aoki Y, Castro R, Baltar A, Shirahige L, Moura Filho A, Nitsche MA, Monte-Silva K;

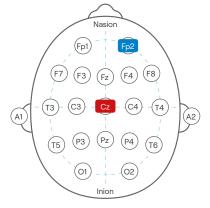
2016 – Developmental Neurorehabilitation, volume 0

Objective

efficacy of tDCS with gait training on functional mobility in Parkinson's patients

Procedure

placebo group: gait training + placebo stimulation; active group: gait training + active stimulation


Methodology

Combination of tDCS and gait training:

double blind study (RCT) with 22 Parkinson's patients (11 placebo group, 11 active group)

Parameters

stim. intensity	2 mA	
duration	13 min stimulation + 30 min gait training	
anode	Cz (2 cm anterior)	
cathode	Fp2 (contralateral to the affected side)	
size of electrode	35 cm ²	
treatment	3 x per week	
scope	10 sessions	
assessment	TUG, gait speed, cadence, UPDRS, UL-MT, BBS, PDQ-39	

10-20 system

Results

Assessment	placebo group	active group
TUG, walking speed	* significant improvements, both TUG and gait speed improved significantly in post, but were no longer significant in follow-up	* significant improvements, both parameters TUG and gait speed improved significantly in the post test, these im- provements remained significant in the follow-up [gait speed: z=-2,184, P=.05; TUG: t=2.223, P=.05]
Cadence	*	significant changes
UPDRS	*	significant changes
UL-MT	*	significant changes
BBS	*	significant changes
PDQ-39	*	significant changes

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The result of the combined therapy of tDCS and gait training initially showed no difference to the control group, both groups improved significantly. In follow-up (1 month), only the positive effects of gait training + tDCS remain sustainable. This means that tDCS in combination with gait training prolongs and stabilizes the effects.

Cognitive deficite – Working memory – Additional study

nature

tDCS-induced episodic memory enhancement and its association with functional network coupling in older adults

Authors

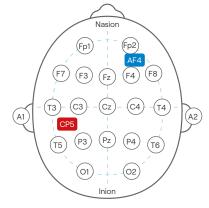
Antonenko D, Hayek D, Netzband J, Grittner U, Flöel A; 2019 – nature, Scientific Reports, volume 9

Objective

effect of tDCS over the left temporo-parietal cortex on episodic memory in the elderly

Procedure

learning picture-word pairs combined with placebo or active stimulation


Methodology

tDCS during memory-related learning tasks:

34 healthy older people with normal cognitive functions

Parameters

stim. intensity	tim. intensity 1 mA	
duration	20 min	
anode	CP5	
cathode	AF4 (right supraorbital)	
size of electrode	anode: 35 cm², cathode: 100 cm²	
treatment	5 learning blocks, stimulation during the first 4 blocks	
scope	2 sessions (per person 1 active /1 sham)	
assessment	accuracy, learning curve, response time, BOLD	

10-20 system

Results

Assessment	placebo group	active group	
Accuracy of task fulfilment	significantly better performance with number of training blocks	** significantly better performance with number of training blocks (P=0.002)	
		 * significantly better performance in retrieving the learning after completing the learning blocks (P=0.014) 	
Learning curve		* steeper learning curve (P=0.014)	
Response time	response time shorter with number of training blocks	*** response time shorter with number of training blocks (P <0.001)	
	no significant difference place	ebo vs. active group	
BOLD	better performance with initia region and hippocampus	ally higher connectivity between temporo-parietal	
		better learning progress with initially higher connectivity	

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The study shows that tDCS also produces significant improvements in cognitive performance in the elderly. Steeper learning curves and better memory performance are achieved. The effectiveness is better with higher existing connectivity between learning-relevant brain regions.

Cognitive deficites - additional study

Augmentation of working memory training by transcranial direct current stimulation (tDCS)

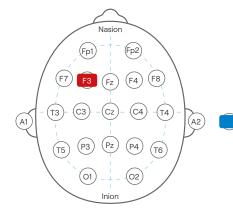
Authors

Ruf SP, Fallgatter AJ, Plewnia C; 2017 – Nature, Volume 7

Procedure

placebo group: working memory training + placebo stimulation; Active group: working memory training + active stimulation

Objective


influence of tDCS on the working memory performance

Methodology

Combination of tDCS and cognitive training: single blind study (RCT) with 71 subjects (23 placebo group, 24 congruent group, 24 incongruent group)

Parameters

stim. intensity	1 mA	
duration	20 min	
anode	F3 (verbal tasks), F4 (spatial tasks)	
cathode	contralateral shoulder, deltoid muscle	
size of electrode	anode: 35 cm²	
treatment	1 x daily	
scope	3 sessions	
assessment	verbal n-back, spatial n-back	

10-20 System

Results

Assessment	
Effects during training (verbal and spatial	*** high performance increase in active group (congruent) compared to placebo $[\beta_{session \times congruent \ vs \ sham} = 1.00, SE=0.27, z=3.66, P<0.001]$
n-back)	** after two stimulations (second day) marked increase in performance of the active group compared active to the placebo group [t(45)=3.29, P=0.002]
Effects after follow-up (verbal and spatial n-back)	* active group (congruent) showed greater increase in performance in follow-up than placebo group $[B_{congruent vs sham} = 2.02, SE=1.01, t(48)=2.01, P=0.050]$
	** active group (congruent) showed significantly better performance level in follow-up than placebo group [t(33)=2.96, P=0.006]
Transfer effects	** * patients with lower performance (baseline) benefited more from stimulation [B _{baseline x congruent vs sham} = 0.74, SE=0.25, t(65)=-3.00, P=0.004]

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

This study showed that stimulation of the DLPFC can increase working memory performance. The cognitive training accompanied by tDCS can also improve non-trained tasks through transfer effects. The improvement in working memory performance can last up to 9 months. Patients with lower initial performance benefit most from the combined use.

Cognitive deficites - Traumatic brain injury

Concomitant use of transcranial direct current stimulation and computer-assisted training for the rehabilitation of attention in traumatic brain injured patients: Behavioral and neuroimaging results

Authors

frontiers in Pharmacology

Sacco K, Galetto V, Dimitri D, Geda E, Perotti F, Zettin M, Geminiani GC;

2016 - Frontiers in Behavioral Neuroscience, volume 10

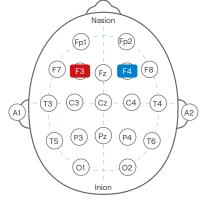
Objective

efficacy of tDCS and cognitive training on shared attention and neural activity

Procedure

placebo group: computer-based training + placebo stimulation;

active group: computer-aided training + active stimulation


Methodology

Combination of tDCS and cognitive training:

single blind study (RCT) with 32 patients after craniocerebral trauma (16 placebo group, 16 active group)

Parameters

stim. intensity	2 mA	
duration	20 minutes (+30 minutes cognitive training)	
anode	DLPFC (side of lesion)	
cathode	DLPFC (contralateral to anode)	
size of electrode	35 cm ²	
treatment	2 x times a day	
scope	10 session	
assessment	TEA, rBANS, BDI, AES, MRT	

10-20 system

Results

Assessment	placebo group	active group
TEA	no significant differences	*** significantly better in pre-post [faster reaction time: t=3.41, P=0.004; Omission error: t=4.49, P<0.0001] improvements remained until follow-up
rBANS		no significant differences
BDI		no significant differences
AES		no significant differences
MRT		** reduction of activity in the right cingulate gyrus

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

After computer-assisted cognitive therapy + tDCS, abnormal cortical activity normalized only in the active group. In addition, significant, sustained improvements in shared attention and responsiveness have been demonstrated.

Cognitive deficites - Multiple Sclerosis

Neuroenhancement through cognitive training and anodal tDCS in multiple sclerosis

Authors

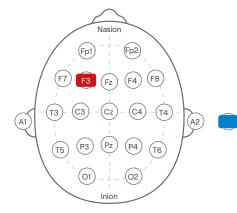
Mattioli F, Bellomi F, Stampatori C,
Capra R, Miniussi C;
2016 – Multiple Sclerosis Journal, volume 22

Objective

effect of tDCS with cognitive training on attention performance

Procedure

placebo group: cognitives training + placebo stimulation; active group: cognitive training + active stimulation


Methodology

Combination of tDCS and Cognitive Training:

double blind study (RCT) with 20 Multiple Sclerosis patients (10 placebo group, 10 verum group)

Parameters

2 mA	
20 min	
left DLPFC (F3)	
shoulder (right)	
25 cm ²	
1 x daily	
10 sessions	
SDMT, PASAT, WCST	

10-20 system

Results

Assessment	placebo group	active group
SDMT	* after 10 days of active group is significantly better than placebo group [P=.019]	
	* significant improvement	
* significantly better effects in the active group (active group compart follow-up baseline [PASAT 2: P=.015; WCST P=.035]		
PASAT 3	* significant improvement	
	after 10 days active group i ** total error [P=.003]	s significantly better than placebo group:
WCST	** perseverative responses [P=	=.035]
	** perseverative errors [P=.043	3]
	** non-perseverative errors [F	P=.009]
Difficulty		* faster achievement of higher difficulty levels [P=.02]

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

tDCS in combination with cognitive training improves attention and information processing in multiple sclerosis patients. In the active group, the significant results are sustainable (follow-up). The stimulation increases the activation of the neuron populations, which could lead to stronger response to therapy.

Cognitive deficites - Parkinson's disease

Mild cognitive impairment in Parkinson's disease is improved by transcranial direct current stimulation combined with physical therapy

ovement

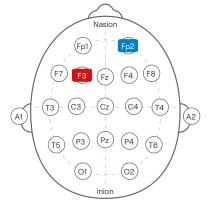
Authors

Manenti R, Brambilla M, Benussi A, Rosini S, Cobelli C, Ferrari C, Petesi M, Orizio I, Padovani A, Borroni B, Cotelli M; 2016 – Movement Disorders, volume 31

Objective

effect of tDCS and exercise training in Parkinson's patients on motor and cognitive performance

Procedure


placebo group: excercise training + placebo stimulation; active group: excercise training + active stimulation

Methodology

Combination of tDCS and exercise training: double blind study (RCT) with 20 Parkinson's patients (10 placebo group, 10 active group)

Parameters

stim. intensity	2 mA	
duration	25 min	
anode	DLPFC (F3/F4: contralateral to the affected side of the body)	
cathode	Fp2/Fp1 (contralateral to anode)	
size of electrode	35 cm ²	
treatment	1 x daily	
scope	10 sessions	
assessment	motor function tests, PD-CRS, verbal fluency, TMT	
	· ·	

10-20 system

Results

Assessment	placebo group	actvie group
Motor tests * both groups improved in the motor tests (e.g. balance)		th groups improved in the motor tests (e.g. balance)
PD-CRS		results improved in post test [P = .003], this effect remained stable in follow-up
Verbal word liquidity		improved in the post test [P=.002] and remained sustainable significantly in the follow-up [P=.005]
ТМТ-В		less time was needed to complete the test [P=.002], also in follow-up

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The results of the study show a significant increase in cognitive performance parameters through the combination of tDCS and exercise training. The motor performance increased significantly in both groups, the memory and attention performance improved only in the active group.

Cognitive deficite - Stroke

The effects of transcranial direct current stimulation on cognition in stroke patients

Authors

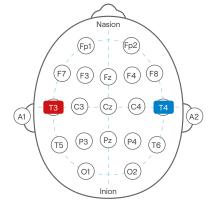
Yun GJ, Chun MH, Kim BR; 2015 – Journal of Stroke, Volume 17

Objective

efficacy of tDCS on cognitive abilities in post stroke patients

Procedure

placebo group: cognitives training + placebo stimulation; active group: cognitives training + active stimulation


Methodology

Combination of tDCS and cognitive training:

double blind study (RCT) with 45 stroke patients (15 placebo group,15 active group (FT-AS left), 15 active group (FT-AS right))

Parameters

stim. intensity	2 mA	
duration	30 min	
anode	T3	
cathode	T4	
size of electrode	25 cm ²	
treatment	1 x daily	
scope	15 sessions	
assessment	K-MBI, K-MMSE, BDST, FVST, VeLT-R	

10-20 system

Results

Assessment	placebo group	active group
K-MMSE	* significant improvements in pre-post comparison	
BDST (backwards visual)		* significant improvements in pre-post comparison
FVST (forward visual span)		* significant improvements in pre-post comparison
VeLT-R (verbal learning test - delayed recall)		* significant improvements in pre-post comparison
K-MBI	* significant improvements in pre-post comparison	

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

Stimulation of the T3 region improved memory. The working memory performance only increased in the active group.

Neglect after stroke

The Effect of Transcranial Direct Current Stimulation on Neglect Syndrome in Stroke Patients

Authors

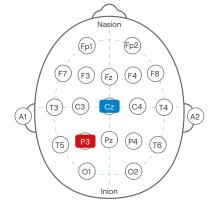
Yi YG, Chun MH, Do KH, Sung EJ, Kwon YG, Kim DY; 2016 – Annals of Rehabilitation Medicine, volume 40

Objective

effect of tDCS with conventional occupational therapy on visuo-spatial attention and post-stroke function with neurological neglect

Procedure

placebo group: conventional therapy + placebo stimulation; actvie group: conventional therapy + active stimulation


Methodology

Combination of tDCS and cognitive training:

single blind study (RCT) with 30 left-sided neglect patients (10 placebo group, 20 active group)

Parameters

stim. intensity	2 mA	
duration	30 min	
anode	P3 or P4	
cathode	Cz	
size of electrode	25 cm ²	
treatment	1 x daily	
scope	15 sessions	
assessment	MVPT, SCT, LBT, CBS, K-MBI, FAC	

10-20 system

Results

Assessment	Results	
	* both groups improved significantly pre-post	
MVPT	* significantly greater improvement in the active group (from pre: 8.2 ± 6.8 to post: 14.8 ± 5.8) to the placebo group (from pre: 8.3 ± 5.2 to post: 10.3 ± 5.5) [P=0.014]	
SCT	* both groups improved pre-post	
	* both groups improved pre-post	
LBT	* significantly greater improvement in the active group (from pre: 27.3 ± 18.6 to post: 12.5 ± 13.0) to the placebo group (from pre: 26.0 ± 13.2 to post: 19.0 ± 12.3) [P=0.016]	
	* both groups improved pre-post	
CBS	* significantly greater improvement in the active group (from pre: 16.2 ± 6.4 to post: 10.0 ± 6.2) to the placebo group (from pre: 16.0 ± 9.7 to post: 12.3 ± 10.8) [P=0.013]	
K-MBI	* both groups improved pre-post	
FAC	* both groups improved pre-post	

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The results of the study show that the anodal or cathodal tDCS of PPC (P3/P4) can be combined to support the existing therapy to increase visuo-spatial attention in neglect patients.

Dysphagia after a stroke

Randomized Trial of Transcranial Direct Current Stimulation for Poststroke Dysphagia

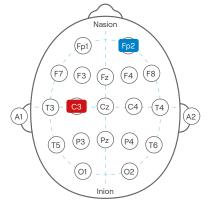
Authors

Suntrup-Krueger S, Ringmaier C, Muhle P, Wollbrink A, Kemmling A, Hanning U, Claus I, Warnecke T, Teismann I, Pantev C, Dziewas R; 2018 – Annals of Neurology, volume 83

Objective

effect of repeated tDCS in combination with swallowing on the dysphagia severity

Procedure


placebo group: swallowing + placebo stimulation; active group: swallowing + active stimulation

Methodology

double-blind study (RCT) with 59 patients after stroke (30 placebo group; 29 verum group)

Parameters

stim. intensity	1 mA	
duration 20 min		
anode	contralesional: from Cz 3,5 cm lateral and 1 cm anter ~C3 or C4 (in brain stem infarction: ~C4)	
cathode	Fp1/Fp2 (contralateral to the anode)	
size of electrode	35 cm² anode, 100 cm² cathode	
treatment	4 x per week	
scope	4 sessions	
assessment	FEDSS, MEG, DSRS, FOIS, Dysphagia limit	

10-20 system

Results

	** significant improvement (baseline-post) [P<.001] FEDSS point in active group (83.3%) compared to placebo
*** significantly greater improvement, 1	FEDSS point in active group (83.3%) compared to placebo
group (36.7%) average improvement	1.3 vs. 0.4 FEDSS points [ŋ2=0.208, P<.0005]
no significant changes * significant increase in swallow-related event-reted desynchronization (baseline-post, 13-30Hz	
** significant improvement in verum group compared to placebo group [P=.001	
* significant improvement in placebo group compared to active group [P=.041]	
* significant improvement in active group compared to placebo group [P=.018]	
	no significant changes ** significant improvement in verum gro * significant improvement in placebo g

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The study shows that tDCS provides additional benefits over conventional dysphagia therapy currently practiced. tDCS can be used to achieve faster and greater progress in acute dysphagia patients.

Aphasia after a stroke

Repetitive sessions of tDCS to improve naming in post-stroke aphasia: Insights from an individual patient data (IPD) meta-analysis

Authors

IOS Press

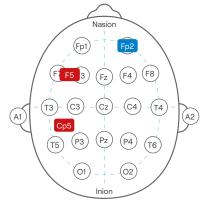
Rosso C, Arbizu C, Dhennain C, Lamy JC, Samson Y;

2018 - Restorative Neurology and Neuroscience (IOS Press), volume 36

Objective

effectiveness of tDCS + naming training based on individual patient data

Procedure


placebo group: naming training + placebo stimulation; tDCS group: naming training + active stimulation

Methodology

meta-analysis with 68 aphasics (87 active-placebo comparisons)

Parameters

stim. intensity	1-2 mA
duration	20 min
anode	F5 or Cp5
cathode	Fp2
size of electrode	35 cm ²
scope	> 5 sessions
assessment	naming accuracy

10-20 system

Results

Assessment	placebo group	active group
	*** significant improvement in naming accuracy by 25% (± 37%) (P<.0001)	*** significant improvement in naming accuracy by 35% (±34%) (± 34%) (P<.0001)
*** the stronger the improvement in the placebo group, the greater the improvement in the tDC [r=0.993, 95% CI: 0.896-0.954, R2= 87%, P<.0001]		
naming accuracy		* frequency of treatment: repeated stimulation (more than five) increases the effects of treat- ment (P<.02)
		anodal stimulation of the left temporoparietal flap most effective
	* for all severity grades of aphasia (mild / mode with active stimulation compared to placebo	erate / severe), greater enhancements can be achieved stimulation (P =.01, P=.002, P=.01

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

This meta-analysis shows that the combination of tDCS + naming task can lead to greater progress. The stimulation amount should exceed 5 treatments and should be done on the temporoparietal lobe.

Aphasia after a stroke

Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia

Authors

BRAIN

Meinzer M, Darkow R, Lindenberg R, Flöel A;

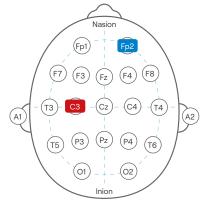
2016 - Brain - A Journal of Neurology, volume 139

Objective

effect of tDCS on language proficiency in patients with chronic aphasia after stroke

Procedure

placebo group: naming training + placebo stimulation; active group: naming training + active stimulation


Methodology

Combination of tDCS and naming training:

double-blind study (RCT) with 26 patients after stroke (13 placebo group, 13 active group)

Parameters

stim. intensity	1 mA	
duration	20 min	
anode	C3	
cathode	Fp2	
size of electrode	anode: 35 cm², cathode: 100 cm²	
treatment	2 x per day, 4 x per week	
scope	2 weeks, 16 sessions	
assessment	Naming Test, CETI, PCQ	

10-20 system

Results

Assessment	placebo group	active group
	* significant improvement on trained objects in post and follow-up	* significant improvements in trained objects [P=.08] and significantly better than the control group in follow-up (6 months) [P=.01]
naming test	* significant improvement in untrained objects, in follow-up no significant improvements (baseline follow-up)	*** significant improvements in trained objects [P=.0009] and significantly better then control group in follow-up (6 months) [P<.01]
CETI (Communicative Effectiveness Index)	* significant	* significantly higher than placebo group after pre-post [P=.037] and in follow-up [P=.055]
PCQ (Partner Communication Questionnaire)	* significant	* significantly higher than placebo group in pre-post [P=.06] and follow-up [P=.03]

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The results show the positive effects of the combination of tDCS and verbal training in chronic aphasia. Progress is achieved in a short period of time. Stimulation on C3 combined with naming training improved speech ability. A transfer into the everyday life could be proven, whereby the quality of life of the patients increased.

Aphasia after a stroke

Differential involvement of the left frontal and temporal regions in verb naming: A tDCS treatment study

Authors

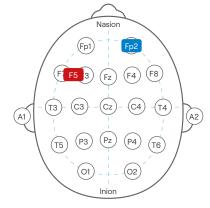
Fiori V, Di Paola M, Oliveri M, Caltagironne C; 2013 – Restorative Neurology and Neuroscience, Volume 31

Objective

effect of tDCS on verbal retrieval performance in aphasics

Procedure

placebo setting: naming + placebo stimulation; active setting: naming training + active stimulation


Methodology

Combination of tDCS and naming training:

uncontrolled study in 7 patients with left hemispheric stroke

Parameters

stim. intensity	1 mA
duration	20 min
anode	F5
cathode	Fp2
size of electrode	35 cm ²
treatment	1 x per day
scope	15 sessions
assessment	Naming test

10-20 system

Results

Assessment	placebo group	active group
naming test no significant improvement		** significant improvement:
		33% correct name [P = .004]
		*** significant improvement pre-post: 40% correct name [P = .000]
	no significant improvement	after 5 days: 54% correctly named and recognized (baseline = 14%)
		in follow-up: performance at 44% (remained constant)

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The results of the study show that tDCS + verbal training is a good therapeutic combination. The stimulation of the Broca area shows good effects in aphasia patients.

Aphasia - Dementia

Inferior parietal transcranial direct current stimulation with training improves cognition in anomic Alzheimer's disease and frontotemporal dementia

Translational Research

Authors

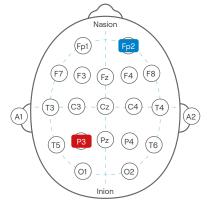
Roncero C, Kniefel H, Service E, Thiel A, Probst S, Chertkow H; 2017 – Alzheimer's & Dementia: Translational Research & Clinical Interventions, volume 3

Objective

impact of tDCS and language training on naming performance

Procedure

placebo group: naming training + placebo stimulation; active group: naming task + active stimulation


Methodology

Combination of tDCS and naming training:

double blind study (RCT) with 10 dementia patients (AD or FTD); crossover design

Parameters

stim. intensity	2 mA	
duration	30 min	
anode	P3	
cathode	Fp2	
size of electrode	35 cm ²	
treatment	1 x per day, every other day	
scope	10 sessions	
assessment	Naming test, Digit span, Interviews	

10-20 system

Results

Assessment	placebo group	active group	
	 trained objects: significant improvement: baseline - last stimulation: 19% improvement 	trained objects: significant improvement: baseline - last stimulation: 40% improvement	
non-traines objects: * in direct comparison: baseline results are the same for both groups, after two weeks: s different (t (9)=3.07, P<.05)		ame for both groups, after two weeks: significantly	
digit span	baseline 11.38 (SE=1.98)	baseline 11.75 (SE=1.01)	
	similar baselin	es [t(7)=0.31, P=.77]	
	after two weeks to 9.38 (SE=1.52)	after two weeks to 12.75 (SE=1.39)	
	* significantly different after two weeks [t(7)=4.34, P<0.1]		
interview	no significant improvement	7/10 relatives reported significant improvements in behavior	

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The results of the study show the positive effects of parietal lobe stimulation on the naming performance. Through the combination of language training and tDCS the effect of the therapy can be strengthened. In addition, stimulated patients were better able to cope with the increased level of semantic processing.

Schizophrenia

Effects of transcranial direct current stimulation on working memory and negative symptoms in schizophrenia: a phase II randomized sham-controlled trial

Authors

Gomes JS, Trevizol AP., Ducos DV., Gadelha A, Ortiz BB, Fonseca AO,

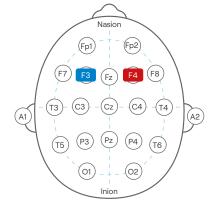
Akiba HT, Azevedo CC, Guimaraes LSP, Shiozawa P, Cordeiro Q, Lacerda A, Dias AM;

2018 - Schizophrenia Research: Cognition, volume 12

Objective

Effect of multiple tDCS in schizophrenia patients

Procedure


placebo group: placebo stimulation; active group: active stimulation

Methodology

double-blind study (RCT) with 24 patients with schizophrenia (12 placebo group, 12 verum group)

Parameters

stim. intensity	2 mA	
duration	20 min	
anode	F3 (left DLPFC)	
cathode	F4 (right DLPFC)	
size of electrode	25 cm ²	
treatment	5 x per week	
scope	10 sessions	
assessment	PANSS, cognitive assessment	

10-20 system

Results

Assessment	placebo group	active group
PANSS-negative symptoms	reduction of baseline to last intervention: 0.17; remained constant until the follow-up	reduction of baseline to last intervention 3.83; remained constant until follow-up
PANSS-general symptoms	reduction of baseline to last intervention and follow-up by 0.83 points	reduction of baseline to last intervention and follow-up by 10.75 points
PANSS-total symptoms	reduction of baseline to last intervention and follow-up by 0.59 points	reduction of baseline to last intervention and to the follow-up by 6 points
cognitive assessment	* time effect for working memory, processing speed, visual learning, problem solving	

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The results of this study recommend the therapeutic use of tDCS in schizophrenia sufferers. Multiple tDCS applications significantly reduced the negative symptoms.

Acoustic hallucinations - Schizophrenia

Examining transcranial direct current stimulation (tDCS) as a treatment for hallucinations in schizophrenia

Authors

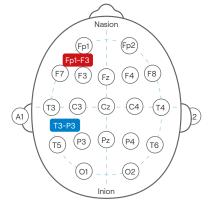
Brunelin J, Mondino M, Gassab L,
Haesebaert F, Gaha L, Suaud-Chagny MF, Saoud M,
Mechri A, Poulet E;

2012 - The American Journal of Psychiatry, volume 169

Objective

efficacy of tDCS in schizophrenia sufferers with severe auditory hallucinations

Procedure


placebo group: placebo stimulation; active group: active timulation

Methodology

double-blind study (RCT) with 30 patients with acoustic hallucinations in schizophrenia (15 placebo group, 15 active group)

Parameters

stim. intensity	2 mA
duration	20 min
anode	Fp1 - F3
cathode	T3 - P3
size of electrode	35 cm ²
treatment	2 x per day
scope	10 sessions
assessment	AHRS, PANSS

10-20 system

Results

Assessment	placebo group	active group
	AHRS improved by 8%	*** after 5 days, a large effect in the active group compared to the placebo group, [df=1.58, p<.0001] (6 months) relapse
effect on AHRS persisted after 1 month p	** HRS improved by 31% (after 5 days)	
	-	*** effect in AHRS increased after one month (36% [t=-4.48, p<.0001]) and also after three months (38% [t=-4.58, p<.0001])
negative symptoms	slight reduction of negative symptoms PANSS from 82.8 to 80.5	* significant reduction in negative symptoms PANSS from 76.9 to 66.9 compared to the placebo group [P=.01]

significance scores: * P<0.05; ** P<0.01; *** P<0.001

Conclusions

The results show that auditory hallucinations in schizophrenics can be significantly reduced after 10 tDCS treatments. The improvement continued until follow-up (3 months) and improved the quality of life of patients. In addition, the stimulation caused a reduction of the negative symptoms (PANSS).

Learn how to apply tDCS

Professionals who seek training through neurocare academy join a global network of professionals delivering best-practice neuromodulation. With online courses and practical workshops held each year throughout the world, the neurocare academy offers training in a range of applications including tDCS, TMS, neurofeedback and applications of EEG.

Our new online learning platform means more practitioners from all over the world can access insights and know-how from a range of leading practitioners and scientists in the field. Professionals can register for instant access to learing modules and resources with the flexibility to complete at their own pace. This can then be followed by a practicle workshop at one of our training centres worldwide.

Abbreviations

AES Apathy Evaluation Scale
AHRS Auditory Hallucination Rating Scale
AM Active Motor Threshold
ANT Attention Network Test
ARAT Action Research Arm Test

BBS Berg Balance Scale
BBT Box and Block Test
BDI Beck Depressions Inventar

BDST Backward Digit Span Test

CBS Catherine Bergego Scale
CATI Communicative Effectiveness Index
CSP Cortical Sildent Period

DSRS Dysphagia Severity Scale
DYN Hand Dynamometer
Dysphagialimit Maximum intake (H2O),
without choking or aspiration

FAB Frontal Assessment Battery
FAC Functional Ambulation Classification

FEDSS Fiberoptic Endoscopic Dysphagia Severity Scale **FFI** Foot Function Index

FOIS Functional Oral Intake Scale
FVST Forward Visual Span Test

HAMA Hamilton Anxiety Scale
HAMD Hamilton Depression Scale
HDRS Hamilton Depression Rating Scale

HPTH Heat Pain Threshold HPTO Heat Pain Tolerance HTap Hand Tapping Test

JHFP Jebsen and Taylor Hand Function Test

K-MBI Korean Modified Barthel Index

LBT Line Bisection Test
LI Laterality Index

MARDS Montgomery-Åsberg Depression Rating Scale

MEG Modified Ashworth Scale
MEP Motor Evoked Potential

MMSE Mini-Mental State Examination

We are a preferred training partner for private practices and hospitals worldwide and also offer custom in-house trainings and remode supervision for individuals and teams.

Get in touch with our experienced team or learn more about your training options on our website.

Information, advice and registration

neurocare group AG

e-mail: academy@neurocaregroup.com

phone: +49 (3677) 68 979-0 **www.neurocaregroup.com**

MRC Medical Research Council
MSQOL-54 Multiple Sclerosis Quality of Life-54
MVPT Motor-free Visual Perception Test

NRS Numerical Rating Scale

OCDS Obsessive Compulsive Drinking Scale

PANSS Positive and Negative Syndrome Scale
PASAT 2 Paced Auditory Serial Addition Task 2
PASAT 3 Paced Auditory Serial Addition Task 3
PASS-20 Pain Anxiety Symptoms Scale-20
PCQ Partner Communication Questionnaire
PD-CRS Parkinson's Disease Cognitive Rating Scale
PDQ-39 Parkinson's Disease Questionnaire-39

rBANS Repeatable Battery for the Assessment of the Neuropsychological Status RCT Randomized Controlled Trial

SCT Star Cancellation Test

SDM Symbol Digit Modality Test
SF-MPQ Short-form McGill Pain Questionnaire

SICI Short-Interval Intracortical Inhibition SS-QOL Stroke-specific Quality of Life

TEA Test for the Examination of Attention
TMT-B Trail Making Test -Part B
TUG Timed Up and Go Test

UEFM Upper Extremity Fugl-Meyer
ULFM Upper Limb Fugl-Meyer
UL-MT Upper Limb Motor Task
UPDRS Unified Parkinson's Disease Rating Scale

VAS Visual Analog Scale
VeLT-R Verbal Learning Test-delayed Recall

WCST Wisconsin Card SortingTest
WHOQOL Quality of Life of the World Health
Organization

WMF Wolf Motor Function Test

9HPT Nine Hole Peg Test

Contact and Information:

neurocare group AG info@neurocaregroup.com phone: +49 (3677) 68 979-0

www.neurocaregroup.com